Examining the synergistic effect of venoms to enhance chemotherapeutics and irradiation using high content cell imaging

SLAS EU 2022

Steven A Trim¹, Rod Benson² and Gareth Griffiths² ¹Venomtech Ltd, Sandwich. ²Imagen Therapeutics Ltd, Manchester, UK

Overview

- This study was designed to elucidate potential synergistic effects of venoms and current cancer treatment using phenotypic screening in-vitro
- SKOV3, ovarian cancer cell line, and three glioblastoma (GBM) stem cell lines were used to study effects of treatments and investigational venoms
- ❖Low dose (0.1ng/ml) of some venoms was synergistic with Paclitaxel and modulated patient glioblastoma cell response to irradiation.
- ❖Caspase-3 was activated in combinations where venoms were dosed at 0.1ng/ml suggesting apoptosis rather than necrosis

Introduction

- Chemotherapeutics and radiation are key cancer therapies with significant side effects
- Cancer therapy toxicity reduces quality of life and often treatment compliance
- Many venom peptides have selective toxicity to cancer cells in-vitro
- High-content imaging with stained cells (Hoechst 3342 & Draq7) allow for measurement of target agnostic effects of drug action.
- ❖Draq7 is a marker of cell membrane integrity and Caspase-3 activity denotes apoptosis

Methods

- SKOV3, ovarian cancer cell line, and three patient derived glioblastoma (GBM) stem cell lines were dosed with 12 phylogenetically diverse venoms from snakes and arachnids
- ❖SKOV3 cells grew as 2D monolayer and GBM cells as 3D spheroids
- ❖All cells were stained with Draq7 and Hoechst 3342 for high content imaging
- Confluent and sub confluent SKOV3 cells were incubated with venoms for 72hrs with and without Etoposide or Paclitaxel
- ❖GBM cells were dosed with venoms in combination with radiation (5 Gy; X-Rad 320, Precision XrayInc., USA)
- Cell number, cytotoxicity, spheroid size and caspase-3 activity were measured using ArrayScan VTI HCS Reader (Cellomics)

Results

Figure 2. Snake venom, but not scorpion venom, increases Draq7

Figure 3. venom synergy with chemotherapeutics

Figure 4. venom effect on GBM irradiation sensitivity

Snake venom at 0.01ng/ml increased sensitivity to irradiation in two of three GBM stem cell lines.

This demonstrates patient variation and may be useful in stratification

Conclusions

- Venoms appear to target rapidly dividing cells which is a key mechanism in cancer treatment
- Scorpion venom cytotoxicity does not increase Draq7
- Venoms could contain active peptides that modulate cell responses to chemotherapy and radiotherapy
- Further work is required to elucidate their active components and their drug like properties

